1,212 research outputs found

    Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277

    Get PDF
    The Andean common bean AND 277 has the Co-14 and the Phg-1 alleles that confer resistance to 21 and eight races, respectively, of the anthracnose (ANT) and angular leaf spot (ALS) pathogens. Because of its broad resistance spectrum, Co-14 is one of the main genes used in ANT resistance breeding. Additionally, Phg-1 is used for resistance to ALS. In this study, we elucidate the inheritance of the resistance of AND 277 to both pathogens using F2 populations from the AND 277 × Rudá and AND 277 × Ouro Negro crosses and F2:3 families from the AND 277 × Ouro Negro cross. Rudá and Ouro Negro are susceptible to all of the above races of both pathogens. Co-segregation analysis revealed that a single dominant gene in AND 277 confers resistance to races 65, 73, and 2047 of the ANT and to race 63-23 of the ALS pathogens. Co-14 and Phg-1 are tightly linked (0.0 cM) on linkage group Pv01. Through synteny mapping between common bean and soybean we also identified two new molecular markers, CV542014450 and TGA1.1570, tagging the Co-14 and Phg-1 loci. These markers are linked at 0.7 and 1.3 cM, respectively, from the Co-14/Phg-1 locus in coupling phase. The analysis of allele segregation in the BAT 93/Jalo EEP558 and California Dark Red Kidney/Yolano recombinant populations revealed that CV542014450 and TGA1.1570 segregated in the expected 1:1 ratio. Due to the physical linkage in cis configuration, Co-14 and Phg-1 are inherited together and can be monitored indirectly with the CV542014450 and TGA1.1570 markers. These results illustrate the rapid discovery of new markers through synteny mapping. These markers will reduce the time and costs associated with the pyramiding of these two disease resistance genes

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    PIP5KIÎČ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, ÎČ or Îł). PIP5KIÎČ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIÎČ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIÎČ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIÎČ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al

    Biodegradation of Pig Manure by the Housefly, Musca domestica: A Viable Ecological Strategy for Pig Manure Management

    Get PDF
    The technology for biodegradation of pig manure by using houseflies in a pilot plant capable of processing 500–700 kg of pig manure per week is described. A single adult cage loaded with 25,000 pupae produced 177.7±32.0 ml of eggs in a 15-day egg-collection period. With an inoculation ratio of 0.4–1.0 ml eggs/kg of manure, the amount of eggs produced by a single cage can suffice for the biodegradation of 178–444 kg of manure. Larval development varied among four different types of pig manure (centrifuged slurry, fresh manure, manure with sawdust, manure without sawdust). Larval survival ranged from 46.9±2.1%, in manure without sawdust, to 76.8±11.9% in centrifuged slurry. Larval development took 6–11 days, depending on the manure type. Processing of 1 kg of wet manure produced 43.9–74.3 g of housefly pupae and the weight of the residue after biodegradation decreased to 0.18–0.65 kg, with marked differences among manure types. Recommendations for the operation of industrial-scale biodegradation facilities are presented and discussed

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    ATP and its N6-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis

    Get PDF
    In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1â€Č and H8–H2â€Č versus the torsion angle ψ (C4–N9-C1â€Č–O4â€Č) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore